

Efficiency in Drug Discovery: Rapid Identification of Drug-like Molecules in Drug Metabolism and Pharmacokinetics (DMPK)

Mehran Moghaddam, PhD, MBA CEO | OROX BioSciences, Inc. San Diego, CA, USA

IC3TC | Lisbon, Portugal | December 2017

OROX BioSciences, Inc. is a biotechnology company dedicated to:

- 1. Discovery of small molecule drugs for treatment of fibrotic diseases
- 2. Development of efficient DMPK screening methods

Central Role of DMPK in Drug Discovery-Development

Thousands of Compounds Enter DMPK Screens Per Year

What Compounds Do We Advance into Pharmacology?

The Challenge

- Takes 24-36 months to screen and isolate a shortlist of compounds
- Pharma spends ~\$1B/year in DMPK screening
- Can we make drug discovery process faster and more efficient?
- What are the obstacles?
- Can we remove any of these obstacles?

Significance of Efficient DMPK Testing

- Faster rate of **drug-like** molecule design and synthesis = Successful drug discovery
- Superior starting points = superior drug candidates
- Optimizing against the therapeutic targets more straightforward than optimizing DMPK
- Discovery stage projects focus on target potency at the expense of good DMPK properties
- It is beneficial to assay for drug-likeness early and independently of target activity: <u>TEST ADME</u> <u>FIRST, even preemptively (Hann and Keseru, Nature Rev. Drug Disc. 2012</u>, *11*, 355-365)

All VALID POINTS, BUT CHALLENGING AND IMPRACTICAL WITH CURRENT ADME TOOLS!

Joseph D. Manna, Samantha J. Richardson, Mehran F. Moghaddam *Bioanalysis*, 2017, 9(4): 359-368

Principles of the Quad-Time of Flight

 High Mass Resolution (m/∆m) is achieved (<1ppm or ± 0.0002 Da), due to time-of-flight as a mass filter.

Introducing Efficiency Through Q-TOF LCMS (UFAST-MS) Rapid Screening for Metabolic Stability

- High throughput liver S9 incubations (60 min)
- 384-well high throughput method was developed on a TECAN
- 96 compounds in quadruplicate across 2 species (human and rat)
- At 0 and 60 min, Incubations quenched by ACN:MeOH and centrifuged
- Supernatants diluted with 1:1 with water and injected onto LC-QTOF-MS (Richardson, et al. Drug Metabolism Letter. 2016, 10:83-90)
- Waters Xevo-G2XS Q-TOF-MS with an Waters I-class LC system
- Imtakt Unison C18 LC column (20mm x 3mm, 3μm particle size)
- Mobile phases A: Water (0.1% Formic acid), B: Acetonitrile (0.1% Formic acid)
- Waters software package: UNIFI[®] Scientific Information System

Traditional Verses Ballistic LC Gradient

(A) Represents the traditional HPLC gradient run for typical metabolic stability assays(B) Represents the sub 1 min ballistic LC gradient developed for U-FAST-MS

UNIFI Workflow for Data Acquisition and Processing 2 3 4 **Component List: Compound Name** Molecular Formula Charge State **Generated Response Table** Item name Compound 1 Compound 2 Compound 3 5168 Injection 1 5330 Injection 2 Injection 3 4562 UNIFI 5331 Injection 4 Injection 5 4459 Injection 6 4723 4837 Injection 7 Injection 8 4391 Injection 9 4782 Extracted Ion **Peak Integration Chromatogram (XIC)** Excel Calculated **Full Scan MS** Results

Comparison of HPLC Verses Ballistic Traces

(A) 7-EC and 2 test articles (B and C) show comparable quality of separation with superior speed for UFast-MS compared to HPLC

Comparison of Stability Data Traditional vs. UFAST-MS

	Historic Stability Data	U-Fast-MS Stability Data	
Compound	% Remaining ± StDev	% Remaining ± StDev	
7-Ethoxycoumarin (7-EC)	59 ± 8	58 ± 7	
Celgene Compound 1	93 ± 1	95 ± 3	
Celgene Compound 2	84 ± 13	95 ± 9	
Celgene Compound 3	86 ± 3	90 ± 7	
Celgene Compound 4	78 ± 1	82 ± 3	
Celgene Compound 5	91 ± 2	96 ± 2	
Celgene Compound 6	2 ± 0	6 ± 1	
Celgene Compound 7	95 ± 9	85 ± 2	
Celgene Compound 8	37 ± 2	41 ± 1	
Celgene Compound 9	49 ± 2	50 ± 3	
Celgene Compound 10	6 ± 0	13 ± 0	

Similar to Historic Data Differ from Historic Data

Subsequently, a large data confirmed this finding

Summary of UFAST-MS Metabolic Stability Workflow

UNIFI scans all data for uploaded compound masses (m/z) and calculates Peak Area for all identified components

loaded into the

software

Impact

PREVIOUSLY OPTIMIZED PROCESS:	UFAST-MS PROCESS:
~190 Compounds/Week	~190 Compounds/Week
- 3 FTE's	- 1 FTE
 Significant LC/MS Method Development 	 No LC/MS Method Development
- 2 Mass Spec's Occupied for 2 Working Days	- 1 Mass Spec Occupied for 1 Working Day
- 6 Working Days	- 4 Working Days

~10,000 compounds studied/year with comparable quality in both methods, but

UFAST-MS Required: 30% the workforce, 25% of Mass Spec and Chemical Resources, and Had 30% Faster Turnaround Time

SAME DATA, LESS RESOURCES, FASTER

Future Efforts (ADME-F)

DMPK-screen of 1000 Compounds Based on POC data (more data pending)

Significant Factors	DMPK Screening Models		
	Pharma	Biotech	OROX
Time to Shortlist (months)	24-36	24-36	<12
Expenditure/Program (\$MM) Total Burden of Synthesis on Med Chem (g)	4.2 13	2.8 12	1.1 5

Conclusions

- Successful collaboration between internal DMPK, IT, and Waters Corp led to U-FAST-MS
- U-FAST-MS is a novel HT-bioanalytical workflow for metabolic stability assay
- Accomplished by assembling existing methods in a novel manner and implementation of custom-designed data processing
- Eliminated the need for LC-MS method development and optimization
- Rapid analysis of 96 compounds in quadruplicate across 2 species in <24h
- Increased capacity and reduced analysis time by several fold, while maintaining quality
- This is a significant improvement on previous methods
- ADME-F methodology is under development at OROX BioScicenes

Acknowledgments

THANK YOU

